3.363 \(\int \frac{\sqrt{d+e x^2}}{a+b x^2+c x^4} \, dx\)

Optimal. Leaf size=240 \[ \frac{\sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )} \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}{\sqrt{b-\sqrt{b^2-4 a c}} \sqrt{d+e x^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )} \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}{\sqrt{\sqrt{b^2-4 a c}+b} \sqrt{d+e x^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}} \]

[Out]

(Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*ArcTan[(Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b - Sqrt[b^2
 - 4*a*c]]*Sqrt[d + e*x^2])])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt[2*c*d - (b + Sqrt[b^2 -
4*a*c])*e]*ArcTan[(Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/
(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 0.318462, antiderivative size = 240, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 6, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {1174, 402, 217, 206, 377, 205} \[ \frac{\sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )} \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}{\sqrt{b-\sqrt{b^2-4 a c}} \sqrt{d+e x^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )} \tan ^{-1}\left (\frac{x \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}{\sqrt{\sqrt{b^2-4 a c}+b} \sqrt{d+e x^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + e*x^2]/(a + b*x^2 + c*x^4),x]

[Out]

(Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*ArcTan[(Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b - Sqrt[b^2
 - 4*a*c]]*Sqrt[d + e*x^2])])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt[2*c*d - (b + Sqrt[b^2 -
4*a*c])*e]*ArcTan[(Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/
(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]])

Rule 1174

Int[((d_) + (e_.)*(x_)^2)^(q_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{r = Rt[b^2 - 4*a*c, 2]
}, Dist[(2*c)/r, Int[(d + e*x^2)^q/(b - r + 2*c*x^2), x], x] - Dist[(2*c)/r, Int[(d + e*x^2)^q/(b + r + 2*c*x^
2), x], x]] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] &&  !Integ
erQ[q]

Rule 402

Int[((a_) + (b_.)*(x_)^2)^(p_.)/((c_) + (d_.)*(x_)^2), x_Symbol] :> Dist[b/d, Int[(a + b*x^2)^(p - 1), x], x]
- Dist[(b*c - a*d)/d, Int[(a + b*x^2)^(p - 1)/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d,
0] && GtQ[p, 0] && (EqQ[p, 1/2] || EqQ[Denominator[p], 4])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{d+e x^2}}{a+b x^2+c x^4} \, dx &=\frac{(2 c) \int \frac{\sqrt{d+e x^2}}{b-\sqrt{b^2-4 a c}+2 c x^2} \, dx}{\sqrt{b^2-4 a c}}-\frac{(2 c) \int \frac{\sqrt{d+e x^2}}{b+\sqrt{b^2-4 a c}+2 c x^2} \, dx}{\sqrt{b^2-4 a c}}\\ &=\frac{\left (2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e\right ) \int \frac{1}{\left (b-\sqrt{b^2-4 a c}+2 c x^2\right ) \sqrt{d+e x^2}} \, dx}{\sqrt{b^2-4 a c}}+\frac{\left (-2 c d+\left (b+\sqrt{b^2-4 a c}\right ) e\right ) \int \frac{1}{\left (b+\sqrt{b^2-4 a c}+2 c x^2\right ) \sqrt{d+e x^2}} \, dx}{\sqrt{b^2-4 a c}}\\ &=\frac{\left (2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e\right ) \operatorname{Subst}\left (\int \frac{1}{b-\sqrt{b^2-4 a c}-\left (-2 c d+\left (b-\sqrt{b^2-4 a c}\right ) e\right ) x^2} \, dx,x,\frac{x}{\sqrt{d+e x^2}}\right )}{\sqrt{b^2-4 a c}}+\frac{\left (-2 c d+\left (b+\sqrt{b^2-4 a c}\right ) e\right ) \operatorname{Subst}\left (\int \frac{1}{b+\sqrt{b^2-4 a c}-\left (-2 c d+\left (b+\sqrt{b^2-4 a c}\right ) e\right ) x^2} \, dx,x,\frac{x}{\sqrt{d+e x^2}}\right )}{\sqrt{b^2-4 a c}}\\ &=\frac{\sqrt{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e} \tan ^{-1}\left (\frac{\sqrt{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e} x}{\sqrt{b-\sqrt{b^2-4 a c}} \sqrt{d+e x^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e} \tan ^{-1}\left (\frac{\sqrt{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e} x}{\sqrt{b+\sqrt{b^2-4 a c}} \sqrt{d+e x^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [B]  time = 5.59739, size = 2585, normalized size = 10.77 \[ \text{Result too large to show} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + e*x^2]/(a + b*x^2 + c*x^4),x]

[Out]

(Sqrt[-((b + Sqrt[b^2 - 4*a*c])/c)]*(2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*Sqrt[2*d - ((b + Sqrt[b^2 - 4*a*c])*e
)/c]*Log[-(Sqrt[(-b + Sqrt[b^2 - 4*a*c])/c]/Sqrt[2]) + x] - Sqrt[-((b + Sqrt[b^2 - 4*a*c])/c)]*(2*c*d + (-b +
Sqrt[b^2 - 4*a*c])*e)*Sqrt[2*d - ((b + Sqrt[b^2 - 4*a*c])*e)/c]*Log[Sqrt[(-b + Sqrt[b^2 - 4*a*c])/c]/Sqrt[2] +
 x] - 2*c*Sqrt[(-b + Sqrt[b^2 - 4*a*c])/c]*d*Sqrt[(2*c*d - b*e + Sqrt[b^2 - 4*a*c]*e)/c]*Log[-(Sqrt[-((b + Sqr
t[b^2 - 4*a*c])/c)]/Sqrt[2]) + x] + b*Sqrt[(-b + Sqrt[b^2 - 4*a*c])/c]*e*Sqrt[(2*c*d - b*e + Sqrt[b^2 - 4*a*c]
*e)/c]*Log[-(Sqrt[-((b + Sqrt[b^2 - 4*a*c])/c)]/Sqrt[2]) + x] + Sqrt[b^2 - 4*a*c]*Sqrt[(-b + Sqrt[b^2 - 4*a*c]
)/c]*e*Sqrt[(2*c*d - b*e + Sqrt[b^2 - 4*a*c]*e)/c]*Log[-(Sqrt[-((b + Sqrt[b^2 - 4*a*c])/c)]/Sqrt[2]) + x] + 2*
c*Sqrt[(-b + Sqrt[b^2 - 4*a*c])/c]*d*Sqrt[(2*c*d - b*e + Sqrt[b^2 - 4*a*c]*e)/c]*Log[Sqrt[-((b + Sqrt[b^2 - 4*
a*c])/c)]/Sqrt[2] + x] - b*Sqrt[(-b + Sqrt[b^2 - 4*a*c])/c]*e*Sqrt[(2*c*d - b*e + Sqrt[b^2 - 4*a*c]*e)/c]*Log[
Sqrt[-((b + Sqrt[b^2 - 4*a*c])/c)]/Sqrt[2] + x] - Sqrt[b^2 - 4*a*c]*Sqrt[(-b + Sqrt[b^2 - 4*a*c])/c]*e*Sqrt[(2
*c*d - b*e + Sqrt[b^2 - 4*a*c]*e)/c]*Log[Sqrt[-((b + Sqrt[b^2 - 4*a*c])/c)]/Sqrt[2] + x] + 2*c*Sqrt[-((b + Sqr
t[b^2 - 4*a*c])/c)]*d*Sqrt[2*d - ((b + Sqrt[b^2 - 4*a*c])*e)/c]*Log[2*d - Sqrt[2]*Sqrt[(-b + Sqrt[b^2 - 4*a*c]
)/c]*e*x + Sqrt[(4*c*d - 2*b*e + 2*Sqrt[b^2 - 4*a*c]*e)/c]*Sqrt[d + e*x^2]] - b*Sqrt[-((b + Sqrt[b^2 - 4*a*c])
/c)]*e*Sqrt[2*d - ((b + Sqrt[b^2 - 4*a*c])*e)/c]*Log[2*d - Sqrt[2]*Sqrt[(-b + Sqrt[b^2 - 4*a*c])/c]*e*x + Sqrt
[(4*c*d - 2*b*e + 2*Sqrt[b^2 - 4*a*c]*e)/c]*Sqrt[d + e*x^2]] + Sqrt[b^2 - 4*a*c]*Sqrt[-((b + Sqrt[b^2 - 4*a*c]
)/c)]*e*Sqrt[2*d - ((b + Sqrt[b^2 - 4*a*c])*e)/c]*Log[2*d - Sqrt[2]*Sqrt[(-b + Sqrt[b^2 - 4*a*c])/c]*e*x + Sqr
t[(4*c*d - 2*b*e + 2*Sqrt[b^2 - 4*a*c]*e)/c]*Sqrt[d + e*x^2]] - 2*c*Sqrt[-((b + Sqrt[b^2 - 4*a*c])/c)]*d*Sqrt[
2*d - ((b + Sqrt[b^2 - 4*a*c])*e)/c]*Log[2*d + Sqrt[2]*Sqrt[(-b + Sqrt[b^2 - 4*a*c])/c]*e*x + Sqrt[(4*c*d - 2*
b*e + 2*Sqrt[b^2 - 4*a*c]*e)/c]*Sqrt[d + e*x^2]] + b*Sqrt[-((b + Sqrt[b^2 - 4*a*c])/c)]*e*Sqrt[2*d - ((b + Sqr
t[b^2 - 4*a*c])*e)/c]*Log[2*d + Sqrt[2]*Sqrt[(-b + Sqrt[b^2 - 4*a*c])/c]*e*x + Sqrt[(4*c*d - 2*b*e + 2*Sqrt[b^
2 - 4*a*c]*e)/c]*Sqrt[d + e*x^2]] - Sqrt[b^2 - 4*a*c]*Sqrt[-((b + Sqrt[b^2 - 4*a*c])/c)]*e*Sqrt[2*d - ((b + Sq
rt[b^2 - 4*a*c])*e)/c]*Log[2*d + Sqrt[2]*Sqrt[(-b + Sqrt[b^2 - 4*a*c])/c]*e*x + Sqrt[(4*c*d - 2*b*e + 2*Sqrt[b
^2 - 4*a*c]*e)/c]*Sqrt[d + e*x^2]] - 2*c*Sqrt[(-b + Sqrt[b^2 - 4*a*c])/c]*d*Sqrt[(2*c*d - b*e + Sqrt[b^2 - 4*a
*c]*e)/c]*Log[2*d - Sqrt[2]*Sqrt[-((b + Sqrt[b^2 - 4*a*c])/c)]*e*x + Sqrt[4*d - (2*(b + Sqrt[b^2 - 4*a*c])*e)/
c]*Sqrt[d + e*x^2]] + b*Sqrt[(-b + Sqrt[b^2 - 4*a*c])/c]*e*Sqrt[(2*c*d - b*e + Sqrt[b^2 - 4*a*c]*e)/c]*Log[2*d
 - Sqrt[2]*Sqrt[-((b + Sqrt[b^2 - 4*a*c])/c)]*e*x + Sqrt[4*d - (2*(b + Sqrt[b^2 - 4*a*c])*e)/c]*Sqrt[d + e*x^2
]] + Sqrt[b^2 - 4*a*c]*Sqrt[(-b + Sqrt[b^2 - 4*a*c])/c]*e*Sqrt[(2*c*d - b*e + Sqrt[b^2 - 4*a*c]*e)/c]*Log[2*d
- Sqrt[2]*Sqrt[-((b + Sqrt[b^2 - 4*a*c])/c)]*e*x + Sqrt[4*d - (2*(b + Sqrt[b^2 - 4*a*c])*e)/c]*Sqrt[d + e*x^2]
] + 2*c*Sqrt[(-b + Sqrt[b^2 - 4*a*c])/c]*d*Sqrt[(2*c*d - b*e + Sqrt[b^2 - 4*a*c]*e)/c]*Log[2*d + Sqrt[2]*Sqrt[
-((b + Sqrt[b^2 - 4*a*c])/c)]*e*x + Sqrt[4*d - (2*(b + Sqrt[b^2 - 4*a*c])*e)/c]*Sqrt[d + e*x^2]] - b*Sqrt[(-b
+ Sqrt[b^2 - 4*a*c])/c]*e*Sqrt[(2*c*d - b*e + Sqrt[b^2 - 4*a*c]*e)/c]*Log[2*d + Sqrt[2]*Sqrt[-((b + Sqrt[b^2 -
 4*a*c])/c)]*e*x + Sqrt[4*d - (2*(b + Sqrt[b^2 - 4*a*c])*e)/c]*Sqrt[d + e*x^2]] - Sqrt[b^2 - 4*a*c]*Sqrt[(-b +
 Sqrt[b^2 - 4*a*c])/c]*e*Sqrt[(2*c*d - b*e + Sqrt[b^2 - 4*a*c]*e)/c]*Log[2*d + Sqrt[2]*Sqrt[-((b + Sqrt[b^2 -
4*a*c])/c)]*e*x + Sqrt[4*d - (2*(b + Sqrt[b^2 - 4*a*c])*e)/c]*Sqrt[d + e*x^2]])/(2*c*Sqrt[b^2 - 4*a*c]*Sqrt[(-
b + Sqrt[b^2 - 4*a*c])/c]*Sqrt[-((b + Sqrt[b^2 - 4*a*c])/c)]*Sqrt[(2*c*d - b*e + Sqrt[b^2 - 4*a*c]*e)/c]*Sqrt[
2*d - ((b + Sqrt[b^2 - 4*a*c])*e)/c])

________________________________________________________________________________________

Maple [C]  time = 0.015, size = 161, normalized size = 0.7 \begin{align*} -{\frac{1}{2}{e}^{{\frac{3}{2}}}\sum _{{\it \_R}={\it RootOf} \left ( c{{\it \_Z}}^{4}+ \left ( 4\,be-4\,cd \right ){{\it \_Z}}^{3}+ \left ( 16\,a{e}^{2}-8\,deb+6\,c{d}^{2} \right ){{\it \_Z}}^{2}+ \left ( 4\,b{d}^{2}e-4\,c{d}^{3} \right ){\it \_Z}+c{d}^{4} \right ) }{\frac{{{\it \_R}}^{2}+2\,{\it \_R}\,d+{d}^{2}}{{{\it \_R}}^{3}c+3\,{{\it \_R}}^{2}be-3\,{{\it \_R}}^{2}cd+8\,{\it \_R}\,a{e}^{2}-4\,{\it \_R}\,bde+3\,{\it \_R}\,c{d}^{2}+b{d}^{2}e-c{d}^{3}}\ln \left ( \left ( \sqrt{e{x}^{2}+d}-\sqrt{e}x \right ) ^{2}-{\it \_R} \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^(1/2)/(c*x^4+b*x^2+a),x)

[Out]

-1/2*e^(3/2)*sum((_R^2+2*_R*d+d^2)/(_R^3*c+3*_R^2*b*e-3*_R^2*c*d+8*_R*a*e^2-4*_R*b*d*e+3*_R*c*d^2+b*d^2*e-c*d^
3)*ln(((e*x^2+d)^(1/2)-e^(1/2)*x)^2-_R),_R=RootOf(c*_Z^4+(4*b*e-4*c*d)*_Z^3+(16*a*e^2-8*b*d*e+6*c*d^2)*_Z^2+(4
*b*d^2*e-4*c*d^3)*_Z+c*d^4))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e x^{2} + d}}{c x^{4} + b x^{2} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate(sqrt(e*x^2 + d)/(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 8.33447, size = 2026, normalized size = 8.44 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

1/4*sqrt(1/2)*sqrt(-(b*d - 2*a*e + (a*b^2 - 4*a^2*c)*sqrt(d^2/(a^2*b^2 - 4*a^3*c)))/(a*b^2 - 4*a^2*c))*log(-((
a*b^2 - 4*a^2*c)*d*sqrt(d^2/(a^2*b^2 - 4*a^3*c))*x^2 + 4*sqrt(1/2)*(a^2*b^2 - 4*a^3*c)*sqrt(e*x^2 + d)*sqrt(d^
2/(a^2*b^2 - 4*a^3*c))*x*sqrt(-(b*d - 2*a*e + (a*b^2 - 4*a^2*c)*sqrt(d^2/(a^2*b^2 - 4*a^3*c)))/(a*b^2 - 4*a^2*
c)) - 2*a*d^2 + (b*d^2 - 4*a*d*e)*x^2)/x^2) - 1/4*sqrt(1/2)*sqrt(-(b*d - 2*a*e + (a*b^2 - 4*a^2*c)*sqrt(d^2/(a
^2*b^2 - 4*a^3*c)))/(a*b^2 - 4*a^2*c))*log(-((a*b^2 - 4*a^2*c)*d*sqrt(d^2/(a^2*b^2 - 4*a^3*c))*x^2 - 4*sqrt(1/
2)*(a^2*b^2 - 4*a^3*c)*sqrt(e*x^2 + d)*sqrt(d^2/(a^2*b^2 - 4*a^3*c))*x*sqrt(-(b*d - 2*a*e + (a*b^2 - 4*a^2*c)*
sqrt(d^2/(a^2*b^2 - 4*a^3*c)))/(a*b^2 - 4*a^2*c)) - 2*a*d^2 + (b*d^2 - 4*a*d*e)*x^2)/x^2) + 1/4*sqrt(1/2)*sqrt
(-(b*d - 2*a*e - (a*b^2 - 4*a^2*c)*sqrt(d^2/(a^2*b^2 - 4*a^3*c)))/(a*b^2 - 4*a^2*c))*log(((a*b^2 - 4*a^2*c)*d*
sqrt(d^2/(a^2*b^2 - 4*a^3*c))*x^2 + 4*sqrt(1/2)*(a^2*b^2 - 4*a^3*c)*sqrt(e*x^2 + d)*sqrt(d^2/(a^2*b^2 - 4*a^3*
c))*x*sqrt(-(b*d - 2*a*e - (a*b^2 - 4*a^2*c)*sqrt(d^2/(a^2*b^2 - 4*a^3*c)))/(a*b^2 - 4*a^2*c)) + 2*a*d^2 - (b*
d^2 - 4*a*d*e)*x^2)/x^2) - 1/4*sqrt(1/2)*sqrt(-(b*d - 2*a*e - (a*b^2 - 4*a^2*c)*sqrt(d^2/(a^2*b^2 - 4*a^3*c)))
/(a*b^2 - 4*a^2*c))*log(((a*b^2 - 4*a^2*c)*d*sqrt(d^2/(a^2*b^2 - 4*a^3*c))*x^2 - 4*sqrt(1/2)*(a^2*b^2 - 4*a^3*
c)*sqrt(e*x^2 + d)*sqrt(d^2/(a^2*b^2 - 4*a^3*c))*x*sqrt(-(b*d - 2*a*e - (a*b^2 - 4*a^2*c)*sqrt(d^2/(a^2*b^2 -
4*a^3*c)))/(a*b^2 - 4*a^2*c)) + 2*a*d^2 - (b*d^2 - 4*a*d*e)*x^2)/x^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d + e x^{2}}}{a + b x^{2} + c x^{4}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**(1/2)/(c*x**4+b*x**2+a),x)

[Out]

Integral(sqrt(d + e*x**2)/(a + b*x**2 + c*x**4), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

Exception raised: TypeError